The backbone conformational entropy of protein folding: experimental measures from atomic force microscopy.
نویسندگان
چکیده
The energy dissipated during the atomic force microscopy-based mechanical unfolding and extension of proteins is typically an order of magnitude greater than their folding free energy. The vast majority of the "excess" energy dissipated is thought to arise due to backbone conformational entropy losses as the solvated, random-coil unfolded state is stretched into an extended, low-entropy conformation. We have investigated this hypothesis in light of recent measurements of the energy dissipated during the mechanical unfolding of "polyproteins" comprised of multiple, homogeneous domains. Given the assumption that backbone conformational entropy losses account for the vast majority of the energy dissipated (an assumption supported by numerous lines of experimental evidence), we estimate that approximately 19(+/-2)J/(mol K residue) of entropy is lost during the extension of three mechanically stable beta-sheet polyproteins. If, as suggested by measured peak-to-peak extension distances, pulling proceeds to near completion, this estimate corresponds to the absolute backbone conformational entropy of the unfolded state. As such, it is exceedingly close to previous theoretical and semi-empirical estimates that place this value at approximately 20J/(mol K residue). The estimated backbone conformational entropy lost during the extension of two helical polyproteins, which, in contrast to the mechanically stable beta-sheet polyproteins, rupture at very low applied forces, is three- to sixfold less. Either previous estimates of the backbone conformational entropy are significantly in error, or the reduced mechanical strength of the helical proteins leads to the rupture of a subsequent domain before full extension (and thus complete entropy loss) is achieved.
منابع مشابه
Consistency in structural energetics of protein folding and peptide recognition.
We report a new free energy decomposition that includes structure-derived atomic contact energies for the desolvation component, and show that it applies equally well to the analysis of single-domain protein folding and to the binding of flexible peptides to proteins. Specifically, we selected the 17 single-domain proteins for which the three-dimensional structures and thermodynamic unfolding f...
متن کاملInvestigations into sequence and conformational dependence of backbone entropy, inter-basin dynamics and the Flory isolated-pair hypothesis for peptides.
The populations and transitions between Ramachandran basins are studied for combinations of the standard 20 amino acids in monomers, dimers and trimers using an implicit solvent Langevin dynamics algorithm and employing seven commonly used force-fields. Both the basin populations and inter-conversion rates are influenced by the nearest neighbor's conformation and identity, contrary to the Flory...
متن کاملProtein Stability, Folding, Disaggregation and Etiology of Conformational Malfunctions
Estimation of protein stability is important for many reasons: first providing an understanding of the basic thermodynamics of the process of folding, protein engineering, and protein stability plays important role in biotechnology especially in food and protein drug design. Today, proteins are used in many branches, including industrial processes, pharmaceutical industry, and medical fields. A...
متن کاملNew-generation amber united-atom force field.
We have developed a new-generation Amber united-atom force field for simulations involving highly demanding conformational sampling such as protein folding and protein-protein binding. In the new united-atom force field, all hydrogens on aliphatic carbons in all amino acids are united with carbons except those on Calpha. Our choice of explicit representation of all protein backbone atoms aims a...
متن کاملScattering Study of Conductive-Dielectric Nano/Micro-Grained Single Crystals Based on Poly(ethylene glycol), Poly(3-hexyl thiophene) and Polyaniline
Two types of rod-coil block copolymers including poly(3-hexylthiophene)-block-poly(ethylene glycol) (P3HT-b-PEG) and PEG-block-polyaniline (PANI) were synthesized using Grignard metathesis polymerization, Suzuki coupling, and interfacial polymerization. Afterward, two types of single crystals were grown by self-seeding methodology to investigate the coily and rod blocks in grafted brushes and o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 322 3 شماره
صفحات -
تاریخ انتشار 2002